Single Nucleotide Polymorphisms of the GJB2 and GJB6 Genes Are Associated with Autosomal Recessive Nonsyndromic Hearing Loss
نویسندگان
چکیده
Single nucleotide polymorphisms (SNPs) are important markers in many studies that link DNA sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular basis of diseases. The DFNB1 locus, which contains the GJB2 and GJB6 genes, plays a key role in nonsyndromic hearing loss. Previous studies have identified important mutations in this locus, but the contribution of SNPs in the genes has not yet been much investigated. The aim of this study was to investigate the association of nine polymorphisms located within the DFNB1 locus with the occurrence of autosomal recessive nonsyndromic hearing loss (ARNSHL). The SNPs rs3751385 (C/T), rs7994748 (C/T), rs7329857 (C/T), rs7987302 (G/A), rs7322538 (G/A), rs9315400 (C/T), rs877098 (C/T), rs945369 (A/C), and rs7333214 (T/G) were genotyped in 122 deaf patients and 132 healthy controls using allele-specific PCR. There were statistically significant differences between patients and controls, in terms of allelic frequencies in the SNPs rs3751385, rs7994748, rs7329857, rs7987302, rs945369, and rs7333214 (P < 0.05). No significant differences between the two groups were observed for rs7322538, rs9315400, and rs877098. Our results suggest that SNPs present in the GJB2 and GJB6 genes may have an influence on ARNSHL in humans.
منابع مشابه
غربالگری ناشنوایان غیرسندرمی جسمی مغلوب برای جایگاه کروموزومی ناشنوایی غیرسندرمی با وراثت مغلوب نوع I(DFNB1) در استانهای آذربایجان شرقی و غربی
Background & Aim: Hereditary hearing loss(HHL) affects one in 1000-2000 newborns and more than 50% of these cases have a genetic base. About 70% of HHL are nonsyndromic with autosomal recessive forms accounting for 85% of the genetic load. Different genes have been reported to be involved, but mutations in GJB2 gene at DFNB1 locus have been established as the basis of autosomal recessive no...
متن کاملInvestigation of the GJB6 Deletion Mutations Del (GJB6- D13s1830) and Del (GJB6-D13s1854) in Iranian Patients with Autosomal-Recessive Non-Syndromic Hearing Loss (ARNSHL)
Hearing loss (HL) is the most common inherited sensory disorder affecting about 1 in 1000 births. The first locus for nonsyndromic autosomal recessive HL is on chromosome 13q11–22. The two genes, GJB2 and GJB6, are closely located on chromosome and are known to be co-expressed in the embryonic cochlea. Deletion mutations involving GJB6 were associated with autosomal-recessive nonsyndromic heari...
متن کاملMutation Analysis of GJB2 and GJB6 Genes and the Genetic Linkage Analysis of Five Common DFNB Loci in the Iranian Families with Autosomal Recessive Non-Syndromic Hearing Loss
The incidence of pre-lingual hearing loss (HL) is about 1 in 1000 neonates. More than 60% of cases are inherited. Non-syndromic HL (NSHL) is extremely heterogeneous: more than 130 loci have been identified so far. The most common form of NSHL is the autosomal recessive form (ARNSHL). In this study, a cohort of 36 big ARNSHL pedigrees with 4 or more patients from 7 provinces of Iran was investig...
متن کاملSpectrum of GJB2 (Cx26) gene mutations in Iranian Azeri patients with nonsyndromic autosomal recessive hearing loss.
OBJECTIVE Hereditary hearing impairment is a genetically heterogeneous disorder. In spite of this, mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries and are largely dependent on ethnic groups. The purpose of our study was to characterize the type and prevalence of GJB2 mutations among Azeri population of Iran. M...
متن کاملMutation Analysis of Connexin 26 Gene and Del (GJB6-D13S1830) in Patients with Hereditary Deafness from Two Provinces in Iran
Mutations in the connexin 26 (Cx26) gene at the DFNB1 locus on chromosome 13q12 are associated with autosomal recessive non-syndromic hearing loss (ARNSHL). There are many known mutations in this gene that cause hearing loss. A single frameshift, at position 35 (35delG) accounts for 50% of mutations in the Caucasian population with carrier frequencies of 1.5-2.5%. In this study we investigated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015